In this paper, we propose a hybrid method that uses stochastic and deterministic search to compute the maximum likelihood estimator of a low-rank count tensor with Poisson loss via state-of-the-art local methods. Our approach is inspired by Simulated Annealing for global optimization and allows for fine-grain parameter tuning as well as adaptive updates to algorithm parameters. We present numerical results that indicate our hybrid approach can compute better approximations to the maximum likelihood estimator with less computation than the state-of-the-art methods by themselves.
翻译:在本文中,我们提出一种混合方法,利用随机和确定性搜索,通过最先进的本地方法计算低位数的极限和Poisson损失的最大概率估计器。我们的方法来自模拟的为全球优化而安纳林(Annaaling),并允许微重参数调整和对算法参数的适应性更新。我们提出了数字结果,表明我们的混合方法可以自己计算出比最新方法更接近于最大概率估计器的最大概率估计器的更佳近似值,而其计算方法比最新方法的计算方法要少。