Anomaly detection methods strive to discover patterns that differ from the norm in a semantic way. This goal is ambiguous as a data point differing from the norm by an attribute e.g., age, race or gender, may be considered anomalous by some operators while others may consider this attribute irrelevant. Breaking from previous research, we present a new anomaly detection method that allows operators to exclude an attribute from being considered as relevant for anomaly detection. Our approach then learns representations which do not contain information over the nuisance attributes. Anomaly scoring is performed using a density-based approach. Importantly, our approach does not require specifying the attributes that are relevant for detecting anomalies, which is typically impossible in anomaly detection, but only attributes to ignore. An empirical investigation is presented verifying the effectiveness of our approach.
翻译:异常探测方法试图以语义方式发现与规范不同的模式。 这个目标模糊不清,因为数据点因诸如年龄、种族或性别等属性而与规范不同,可能会被某些操作者视为异常现象,而其他人则可能认为这一属性无关。 与先前的研究不同,我们提出了一个新的异常探测方法,使操作者可以将某个属性排除在与异常检测相关的范围之外。 我们的方法随后学习了不包含关于骚扰属性的信息的表达方式。 异常评分是用密度法进行的。 重要的是,我们的方法并不要求具体说明与发现异常有关的属性,这在异常检测中通常是不可能的,但只是忽略的属性。 实证调查正在核实我们的方法的有效性。