Controllable text generation is an appealing but challenging task, which allows users to specify particular attributes of the generated outputs. In this paper, we propose a controllable dialogue generation model to steer response generation under multi-attribute constraints. Specifically, we define and categorize the commonly used control attributes into global and local ones, which possess different granularities of effects on response generation. Then, we significantly extend the conventional seq2seq framework by introducing a novel two-stage decoder, which first uses a multi-grained style specification layer to impose the stylistic constraints and determine word-level control states of responses based on the attributes, and then employs a response generation layer to generate final responses maintaining both semantic relevancy to the contexts and fidelity to the attributes. Furthermore, we train our model with an attribute consistency reward to promote response control with explicit supervision signals. Extensive experiments and in-depth analyses on two datasets indicate that our model can significantly outperform competitive baselines in terms of response quality, content diversity and controllability.
翻译:可控文本生成是一项具有吸引力但具有挑战性的任务,它使用户能够指定生成产出的具体属性。 在本文中,我们提议了一种可控对话生成模式,以引导在多种属性制约下生成响应。具体地说,我们将常用的控制属性定义和分类为全球和本地控制属性,这些属性对响应生成具有不同影响微粒。然后,我们大幅扩展常规后继2Seq框架,引入一个新型的两阶段解码器,首先使用多色风格规格规格,以根据这些属性施加模式限制并确定对响应的字级控制状态,然后使用一个响应生成层来生成最终响应,既保持对背景的语义相关性,又保持对属性的忠诚性。此外,我们还以属性一致性奖励的方式培训我们的模型,以明确的监督信号促进响应控制。对两个数据集进行广泛的实验和深入分析表明,我们的模型在响应质量、内容多样性和可控性方面可以大大超出竞争性基线。