With the development of computational power and techniques for data collection, deep learning demonstrates a superior performance over most existing algorithms on visual benchmark data sets. Many efforts have been devoted to studying the mechanism of deep learning. One important observation is that deep learning can learn the discriminative patterns from raw materials directly in a task-dependent manner. Therefore, the representations obtained by deep learning outperform hand-crafted features significantly. However, for some real-world applications, it is too expensive to collect the task-specific labels, such as visual search in online shopping. Compared to the limited availability of these task-specific labels, their coarse-class labels are much more affordable, but representations learned from them can be suboptimal for the target task. To mitigate this challenge, we propose an algorithm to learn the fine-grained patterns for the target task, when only its coarse-class labels are available. More importantly, we provide a theoretical guarantee for this. Extensive experiments on real-world data sets demonstrate that the proposed method can significantly improve the performance of learned representations on the target task, when only coarse-class information is available for training. Code is available at \url{https://github.com/idstcv/CoIns}.


翻译:随着计算能力和数据收集技术的开发,深层次的学习表明,在视觉基准数据集方面大多数现有算法的利用表现优于大多数现有的算法。许多努力都致力于研究深层次学习的机制。一个重要的意见是深层次的学习可以直接以任务依赖的方式从原材料中学习歧视模式。因此,通过深层次学习超模手工制作的特征而获得的表述非常显著。然而,对于某些现实世界的应用,收集任务特定标签,例如网上购物的视觉搜索,成本太高。与这些特定任务标签有限相比,它们的粗皮类标签更负担得起,但从中学到的表述对于目标任务来说可能不理想。为减轻这一挑战,我们建议一种算法,在只有粗皮类标签时,学习目标任务的精细的分类模式。更重要的是,我们为此提供理论上的保证。在现实世界数据集上进行的广泛实验表明,拟议的方法可以大大改进目标任务中学习的表述的绩效,而只有可提供粗略/Cogivrs/Cogrus/comid 。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
2+阅读 · 2021年10月10日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员