Designing early warning systems for harsh weather and its effects, such as urban flooding or landslides, requires accurate short-term forecasts (nowcasts) of precipitation. Nowcasting is a significant task with several environmental applications, such as agricultural management or increasing flight safety. In this study, we investigate the use of a UNet core-model and its extension for precipitation nowcasting in western Europe for up to 3 hours ahead. In particular, we propose the Weather Fusion UNet (WF-UNet) model, which utilizes the Core 3D-UNet model and integrates precipitation and wind speed variables as input in the learning process and analyze its influences on the precipitation target task. We have collected six years of precipitation and wind radar images from Jan 2016 to Dec 2021 of 14 European countries, with 1-hour temporal resolution and 31 square km spatial resolution based on the ERA5 dataset, provided by Copernicus, the European Union's Earth observation programme. We compare the proposed WF-UNet model to persistence model as well as other UNet based architectures that are trained only using precipitation radar input data. The obtained results show that WF-UNet outperforms the other examined best-performing architectures by 22%, 8% and 6% lower MSE at a horizon of 1, 2 and 3 hours respectively.
翻译:设计严酷天气及其影响的预警系统,如城市洪水或山崩,需要准确的短期降雨量预报(现在的播种),而现在播种是一项重要任务,包括若干环境应用,如农业管理或提高飞行安全性。在本研究中,我们调查了UNet核心模型的使用情况及其用于现在在西欧播种高达3小时的降水量的扩展,特别是,我们提议采用3D-UNet(WFS-UNet)天气组合模型(WFS-UNet)模型,该模型使用核心3D-UNet模型,将降水和风速变量作为学习过程的投入,并分析其对降水目标任务的影响。我们收集了14个欧洲国家从2016年1月至2021年12月的6年降水和风雷达图像,其中1小时时间分辨率和31平方公里空间分辨率以ERA5数据集为基础,该模型在西欧地球观测方案提供最多3小时。我们比较了拟议的WFFS-UNet模型与持久性模型以及仅使用降水雷达输入数据培训的其他UNet结构。我们获得的结果显示,WFS-UN-UNet结构在1小时和22 %的运行结构中分别显示,在1小时和3SESESESemasmas