We investigate fine-grained algorithmic aspects of identification problems in graphs and set systems, with a focus on Locating-Dominating Set and Test Cover. We prove, among other things, the following three (tight) conditional lower bounds. \begin{enumerate} \item \textsc{Locating-Dominating Set} does not admit an algorithm running in time $2^{o(k^2)} \cdot poly(n)$, nor a polynomial time kernelization algorithm that reduces the solution size and outputs a kernel with $2^{o(k)}$ vertices, unless the \ETH\ fails. \end{enumerate} To the best of our knowledge, \textsc{Locating-Dominating Set} is the first problem that admits such an algorithmic lower-bound (with a quadratic function in the exponent) when parameterized by the solution size. \begin{enumerate}[resume] \item \textsc{Test Cover} does not admit an algorithm running in time $2^{2^{o(k)}} \cdot poly(|U| + |\calF|)$. \end{enumerate} After \textsc{Edge Clique Cover} and \textsc{BiClique Cover}, this is the only example that we know of that admits a double exponential lower bound when parameterized by the solution size. \begin{enumerate}[resume] \item \textsc{Locating-Dominating Set} (respectively, \textsc{Test Cover}) parameterized by the treewidth of the input graph (respectively, of the natural auxiliary graph) does not admit an algorithm running in time $2^{2^{o(\tw)}} \cdot poly(n)$ (respectively, $2^{2^{o(\tw)}} \cdot poly(|U| + |\calF|))$. \end{enumerate} This result augments the small list of NP-Complete problems that admit double exponential lower bounds when parameterized by treewidth. We also present algorithms whose running times match the above lower bounds. We also investigate the parameterizations by several other structural graph parameters, answering some open problems from the literature.
翻译:暂无翻译