We investigate fine-grained algorithmic aspects of identification problems in graphs and set systems, with a focus on Locating-Dominating Set and Test Cover. We prove, among other things, the following three (tight) conditional lower bounds. \begin{enumerate} \item \textsc{Locating-Dominating Set} does not admit an algorithm running in time $2^{o(k^2)} \cdot poly(n)$, nor a polynomial time kernelization algorithm that reduces the solution size and outputs a kernel with $2^{o(k)}$ vertices, unless the \ETH\ fails. \end{enumerate} To the best of our knowledge, \textsc{Locating-Dominating Set} is the first problem that admits such an algorithmic lower-bound (with a quadratic function in the exponent) when parameterized by the solution size. \begin{enumerate}[resume] \item \textsc{Test Cover} does not admit an algorithm running in time $2^{2^{o(k)}} \cdot poly(|U| + |\calF|)$. \end{enumerate} After \textsc{Edge Clique Cover} and \textsc{BiClique Cover}, this is the only example that we know of that admits a double exponential lower bound when parameterized by the solution size. \begin{enumerate}[resume] \item \textsc{Locating-Dominating Set} (respectively, \textsc{Test Cover}) parameterized by the treewidth of the input graph (respectively, of the natural auxiliary graph) does not admit an algorithm running in time $2^{2^{o(\tw)}} \cdot poly(n)$ (respectively, $2^{2^{o(\tw)}} \cdot poly(|U| + |\calF|))$. \end{enumerate} This result augments the small list of NP-Complete problems that admit double exponential lower bounds when parameterized by treewidth. We also present algorithms whose running times match the above lower bounds. We also investigate the parameterizations by several other structural graph parameters, answering some open problems from the literature.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员