Recent work on adversarial learning has focused mainly on neural networks and domains where those networks excel, such as computer vision, or audio processing. The data in these domains is typically homogeneous, whereas heterogeneous tabular datasets domains remain underexplored despite their prevalence. When searching for adversarial patterns within heterogeneous input spaces, an attacker must simultaneously preserve the complex domain-specific validity rules of the data, as well as the adversarial nature of the identified samples. As such, applying adversarial manipulations to heterogeneous datasets has proved to be a challenging task, and no generic attack method was suggested thus far. We, however, argue that machine learning models trained on heterogeneous tabular data are as susceptible to adversarial manipulations as those trained on continuous or homogeneous data such as images. To support our claim, we introduce a generic optimization framework for identifying adversarial perturbations in heterogeneous input spaces. We define distribution-aware constraints for preserving the consistency of the adversarial examples and incorporate them by embedding the heterogeneous input into a continuous latent space. Due to the nature of the underlying datasets We focus on $\ell_0$ perturbations, and demonstrate their applicability in real life. We demonstrate the effectiveness of our approach using three datasets from different content domains. Our results demonstrate that despite the constraints imposed on input validity in heterogeneous datasets, machine learning models trained using such data are still equally susceptible to adversarial examples.
翻译:最近关于对抗性学习的工作主要集中于神经网络和这些网络最优秀的领域,例如计算机视觉或音频处理。这些领域的数据一般是同质的,而不同的表格数据集领域尽管普遍存在,但仍未得到充分探索。在寻找不同输入空间内的对抗模式时,攻击者必须同时维护数据中复杂的具体领域的有效性规则,以及所查明的样本的对抗性质。因此,将对抗性操纵应用于不同数据集是一项具有挑战性的任务,迄今没有建议通用攻击方法。然而,我们认为,在各种表格数据方面受过训练的机器学习模式很容易受到对抗性操纵,而那些受过连续或同质数据(如图像)训练的模型则仍然受到对抗性操纵。为了支持我们的主张,我们引入了一个通用的优化框架,用以查明不同输入空间中的对抗性干扰。我们界定了维持对抗性实例一致性的分布性约束,并通过将差异性输入嵌入持续的潜伏空间来将其纳入。由于基本数据集的性质,我们侧重于$\ell_0美元/ perturbationations, 也像那些受过对抗性操纵的模型一样容易受到对抗性操纵。我们要用经过训练的模型来证明它们是否适合真实生活。我们的数据的有效性。我们用经过训练的模型来证明数据的有效性。我们的数据。我们用不同的模型来证明。我们的数据是用来证明数据。我们用不同的模型来显示我们的数据的有效性。