Spiking Neural Networks~(SNNs) are a promising research paradigm for low power edge-based computing. Recent works in SNN backpropagation has enabled training of SNNs for practical tasks. However, since spikes are binary events in time, standard loss formulations are not directly compatible with spike output. As a result, current works are limited to using mean-squared loss of spike count. In this paper, we formulate the output probability interpretation from the spike count measure and introduce spike-based negative log-likelihood measure which are more suited for classification tasks especially in terms of the energy efficiency and inference latency. We compare our loss measures with other existing alternatives and evaluate using classification performances on three neuromorphic benchmark datasets: NMNIST, DVS Gesture and N-TIDIGITS18. In addition, we demonstrate state of the art performances on these datasets, achieving faster inference speed and less energy consumption.
翻译:Spik NeuralNetworks~(SNN)是低功率边基计算的一个很有希望的研究范例。 SNN 最近的后推进工程使得对 SNN 进行实际任务的培训成为可能。 但是,由于峰值是时间上的二进制事件,标准损失配方与峰值输出不直接兼容。 因此,当前工程仅限于使用平均定量的峰值计数损失。 在本文中, 我们从峰值计数中绘制输出概率判读, 并引入基于峰值的负日志模型, 更适合进行分类任务, 特别是在能源效率和推导延度方面。 我们将损失计量与其他现有替代品进行比较, 并使用三个神经形态基准数据集( NMNIST、 DVS Gesture 和 N-TIDIGITS18) 的分类性能进行评估。 此外, 我们展示了这些数据集的艺术性能, 实现更快的推断速度和更少的能源消耗。