Learning object affordances is an effective tool in the field of robot learning. While the data-driven models delve into the exploration of affordances of single or paired objects, there is a notable gap in the investigation of affordances of compound objects that are composed of an arbitrary number of objects with complex shapes. In this study, we propose Multi-Object Graph Affordance Network (MOGAN) that models compound object affordances and predicts the effect of placing new objects on top of the existing compound. Given different tasks, such as building towers of specific heights or properties, we used a search based planning to find the sequence of stack actions with the objects of suitable affordances. We showed that our system was able to correctly model the affordances of very complex compound objects that include stacked spheres and cups, poles, and rings that enclose the poles. We demonstrated the applicability of our system in both simulated and real-world environments, comparing our systems with a baseline model to highlight its advantages.
翻译:暂无翻译