Map labeling is a classical problem in cartography and geographic information systems (GIS) that asks to place labels for area, line, and point features, with the goal to select and place the maximum number of independent, i.e., overlap-free, labels. A practically interesting case is point labeling with axis-parallel rectangular labels of common size. In a fully dynamic setting, at each time step, either a new label appears or an existing label disappears. Then, the challenge is to maintain a maximum cardinality subset of pairwise independent labels with sub-linear update time. Motivated by this, we study the maximal independent set ((MIS)) and maximum independent set (Max-IS) problems on fully dynamic (insertion/deletion model) sets of axis-parallel rectangles of two types -- (i) uniform height and width and (ii) uniform height and arbitrary width; both settings can be modeled as rectangle intersection graphs. We present the first deterministic algorithm for maintaining an MIS (and thus a 4-approximate Max-IS) of a dynamic set of uniform rectangles with polylogarithmic update time. This breaks the natural barrier of $\Omega(\Delta)$ update time (where $\Delta$ is the maximum degree in the graph) for \emph{vertex updates} presented by Assadi et al. (STOC 2018). We continue by investigating Max-IS and provide a series of deterministic dynamic approximation schemes with approximation factors between 2 and 4 and corresponding running-time trade-offs. We have implemented our algorithms and reported the results of an experimental comparison exploring the trade-off between solution quality and update time for synthetic and real-world map labeling instances.
翻译:地图标签是制图和地理信息系统(GIS)的一个古老问题,它要求为区域、线条和点特征设置标签,目的是选择和放置独立的最大数目,即无重叠、标签。一个实际有趣的案例是用共同大小的轴-parllel矩形标签标记。在一个完全动态的设置中,每个步骤都有一个新的标签或现有标签消失。然后,挑战是如何保持一个具有亚线性更新时间的双向独立标签的最大基本部分。我们为此研究最大独立的数据集(MIS)和最大独立数据集(MAx-IS)的最大数目。一个实际有趣的案例是用两种类型的轴-parllel矩形标签标记。在一个完全动态的设置中,要么是一个新的标签,要么是新的标签,要么是新的标签,要么是现有的标签。我们用第一个贸易确定性算算算算算算法来维持MIS(因此是接近的 Max-IS) 和最高独立数据集(max- IS) 和最大独立数数值的自动直线性al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-sal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-s-al-al-al-lutxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx