We exploit the complementary strengths of vision and proprioception to develop a point-goal navigation system for legged robots, called VP-Nav. Legged systems are capable of traversing more complex terrain than wheeled robots, but to fully utilize this capability, we need a high-level path planner in the navigation system to be aware of the walking capabilities of the low-level locomotion policy in varying environments. We achieve this by using proprioceptive feedback to ensure the safety of the planned path by sensing unexpected obstacles like glass walls, terrain properties like slipperiness or softness of the ground and robot properties like extra payload that are likely missed by vision. The navigation system uses onboard cameras to generate an occupancy map and a corresponding cost map to reach the goal. A fast marching planner then generates a target path. A velocity command generator takes this as input to generate the desired velocity for the walking policy. A safety advisor module adds sensed unexpected obstacles to the occupancy map and environment-determined speed limits to the velocity command generator. We show superior performance compared to wheeled robot baselines, and ablation studies which have disjoint high-level planning and low-level control. We also show the real-world deployment of VP-Nav on a quadruped robot with onboard sensors and computation. Videos at https://navigation-locomotion.github.io
翻译:我们利用视觉和自我认知的互补优势,为脚步机器人开发一个名为VP-Nav的点目标导航系统。 腿系统能够比轮式机器人更复杂的地形,但为了充分利用这一能力,我们需要导航系统中的高级路径规划仪,以了解低水平移动政策在不同环境中的行走能力。 我们利用自觉反馈,通过感知到玻璃墙等意外障碍,地形特性,如地表滑动或软性能,以及机器人特性,如可能被视觉错失的额外有效载荷等,确保计划路径的安全。 导航系统利用机上摄像头制作占用图和相应的成本图,以达到目标。 快速行进规划仪然后生成目标路径。 速度指挥器将此作为投入,为行走政策创造所需的速度。 安全顾问模块给占用地图和环境确定速度限制增加了感知到的意外障碍。 我们展示了比轮式机器人基线更好的性能或软性能, 和超载载荷特性研究, 生成了占用图的占用图图图图和相应的成本图, 也展示了高水平的机器人传感器和低水平的图像。