A broad class of smooth, possibly data-adaptive nonparametric copula estimators that contains empirical Bernstein copulas introduced by Sancetta and Satchell (and thus the empirical beta copula proposed by Segers, Sibuya and Tsukahara) is studied. Within this class, a subclass of estimators that depend on a scalar parameter determining the amount of marginal smoothing and a functional parameter controlling the shape of the smoothing region is specifically considered. Empirical investigations of the influence of these parameters suggest to focus on two particular data-adaptive smooth copula estimators that were found to be uniformly better than the empirical beta copula in all of the considered Monte Carlo experiments. Finally, with future applications to change-point detection in mind, conditions under which related sequential empirical copula processes converge weakly are provided.
翻译:研究一个广泛的光滑、可能数据适应性非参数焦云测量仪,其中包括Sancetta和Satchell(Segers、Sibuya和Tsukahara建议的经验性贝酷拉)引入的经验性Bernstein相干器(以及Siegers、Sibuya和Tsukahara提出的经验性贝酷拉),在这一类中,专门考虑一个取决于确定边际平滑量的标尺参数和控制平滑区域形状的功能参数的亚类测算器,对这些参数的影响进行实证性调查表明,重点应放在两个经发现比所有蒙特卡洛实验中经验性比经验性平滑动焦云更好的特定数据性平流测算器上。最后,随着未来在考虑改变点探测时的应用,所提供的相关相继经验性相交点过程相交汇不力的条件。