Foucaud {\it et al.} recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. Let $G$ be a graph with vertex set $V(G)$, $M$ a subset of $V(G)$, and $e$ be an edge in $E(G)$, and let $P(M, e)$ be the set of pairs $(x,y)$ such that $d_G(x, y)\neq d_{G-e}(x, y)$ where $x\in M$ and $y\in V(G)$. $M$ is called a \emph{distance-edge-monitoring set} if every edge $e$ of $G$ is monitored by some vertex of $M$, that is, the set $P(M, e)$ is nonempty. The {\em distance-edge-monitoring number} of $G$, denoted by $\operatorname{dem}(G)$, is defined as the smallest size of distance-edge-monitoring sets of $G$. For two graphs $G,H$ of order $m,n$, respectively, in this paper we prove that $\max\{m\operatorname{dem}(H),n\operatorname{dem}(G)\} \leq\operatorname{dem}(G\,\Box \,H) \leq m\operatorname{dem}(H)+n\operatorname{dem}(G) -\operatorname{dem}(G)\operatorname{dem}(H)$, where $\Box$ is the Cartesian product operation. Moreover, we characterize the graphs attaining the upper and lower bounds and show their applications on some known networks. We also obtain the distance-edge-monitoring numbers of join, corona, cluster, and some specific networks.


翻译:Foucaud { lt et al.} 最近推出并启动了对网络监测领域新图形- 理论概念的研究。 $G$应该是一个带有顶端设置为$V( G) $( G) 的图形, $$( 美元) 的子集是$( G) 美元, $( M, e) 美元应该是一对子( x) $( y) (x, neq) d ⁇ G- e} (x, y) 美元, 其中$( 美元) m) 和$( G) 美元。 $( 美元) 是一个名为 emph{ g) 的G$ 的图形, $( 美元) 的每个边端都由某位( g) 美元( g) 的顶端点监测, 也就是, $( M) e) 的设置是非空的 。 $( 美元 ( ) 数字( ) 和 美元( 美元) 数字( 的 数字( 美元) 数字( 美元) ) 数字( 美元) 以内的 最暗( G) 表示( 美元) 數( 美元) 的數(美元) 的數( ) ) 显示的大小( ) 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Three aspects of the MSTCI problem
Arxiv
0+阅读 · 2023年1月18日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
49+阅读 · 2020年12月16日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员