This paper introduces a new framework of algebraic equivalence relations between time series and new distance metrics between them, then applies these to investigate the Australian ``Black Summer'' bushfire season of 2019-2020. First, we introduce a general framework for defining equivalence between time series, heuristically intended to be equivalent if they differ only up to noise. Our first specific implementation is based on using change point algorithms and comparing statistical quantities such as mean or variance in stationary segments. We thus derive the existence of such equivalence relations on the space of time series, such that the quotient spaces can be equipped with a metrizable topology. Next, we illustrate specifically how to define and compute such distances among a collection of time series and perform clustering and additional analysis thereon. Then, we apply these insights to analyze air quality data across New South Wales, Australia, during the 2019-2020 bushfires. There, we investigate structural similarity with respect to this data and identify locations that were impacted anonymously by the fires relative to their location. This may have implications regarding the appropriate management of resources to avoid gaps in the defense against future fires.
翻译:本文介绍了时间序列和时间序列之间新的距离测量等值关系的新框架,然后运用这些框架调查2019-2020年澳大利亚“黑夏夏林火季节”的2019-2020年。首先,我们引入了界定时间序列之间等值的一般框架,如果时间序列与噪音不同,则其超自然的用意是等同的。我们的第一个具体实施依据是使用变化点算法,比较固定部分的平均或差异等统计数量。因此,我们从时间序列空间中得出了这种等同关系的存在,这样可以使商数空间配备一个可计量的地形学。接下来,我们具体地说明如何界定和计算时间序列收集之间的这种距离,并进行集群和额外分析。然后,我们运用这些洞见来分析2019-2020年的野火期间澳大利亚新南威尔士的空气质量数据。我们在那里调查了这些数据的结构相似性,并查明了与火灾位置相对匿名影响的地点。这可能会影响到资源的适当管理,以避免未来防火的缺口。