An $r$-quasiplanar graph is a graph drawn in the plane with no $r$ pairwise crossing edges. Let $s \geq 3$ be an integer and $r=2^s$. We prove that there is a constant $C$ such that every $r$-quasiplanar graph with $n \geq r$ vertices has at most $n\left(Cs^{-1}\log n\right)^{2s-4}$ edges. A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a string graph. We show that for every $\epsilon>0$, there exists $\delta>0$ such that every string graph with $n$ vertices, whose chromatic number is at least $n^{\epsilon}$ contains a clique of size at least $n^{\delta}$. A clique of this size or a coloring using fewer than $n^{\epsilon}$ colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings. In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erdos, Gallai, and Rogers. Given a $K_r$-free graph on $n$ vertices and an integer $s<r$, at least how many vertices can we find such that the subgraph induced by them is $K_s$-free?
翻译:美元 方平面图是一张在平面上绘制的图表,没有美元对称交叉边缘。 美元 3 美元为整数, 美元=2美元。 我们证明, 每一张美元不变的C美元, 这样每张带有美元对方平面的美元正方平面图, 美元正方平面的每张正方平面图, 其色数至少为$n ⁇ -1 ⁇ log n ⁇ 2s-4} 边缘。 一张图, 其顶端是连续的曲线, 双平面由边缘连接, 如果两张是正方平面的, 则称为字符平面图。 以美元每张正平面平面平面平面的每张正平面图显示$的每张方平面图, 以美元平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面,平面平面平面平面,平面平面平面,平面平面平面平面平面,平面,平面,平面平面平面平面平面,平面,平面,平面,平面,平面平面,平面平面平面平面平面,平面平面平面,平面平面,平面,平面平面,平面平面平面平面,平面平面平面,平面平面平面,平面,平面,平面,平面平面,平面平面平面平面,平面平面平面平面平面平面平面平面平面,平面,平面平面,平面平面平面平面,平面,平面平面,平面,平面平面,