Point process modeling is gaining increasing attention, as point process type data are emerging in numerous scientific applications. In this article, motivated by a neuronal spike trains study, we propose a novel point process regression model, where both the response and the predictor can be a high-dimensional point process. We model the predictor effects through the conditional intensities using a set of basis transferring functions in a convolutional fashion. We organize the corresponding transferring coefficients in the form of a three-way tensor, then impose the low-rank, sparsity, and subgroup structures on this coefficient tensor. These structures help reduce the dimensionality, integrate information across different individual processes, and facilitate the interpretation. We develop a highly scalable optimization algorithm for parameter estimation. We derive the large sample error bound for the recovered coefficient tensor, and establish the subgroup identification consistency, while allowing the dimension of the multivariate point process to diverge. We demonstrate the efficacy of our method through both simulations and a cross-area neuronal spike trains analysis in a sensory cortex study.
翻译:点的模型正在引起越来越多的注意,因为许多科学应用中正在出现点进程类型数据。在本篇文章中,在神经钉钉列列研究的推动下,我们提出了一个新的点进程回归模型,在这个模型中,反应和预测器可以是一个高维点进程。我们使用一套基于转移函数的组合组合组合,通过有条件强度来模拟预测效应,同时以进化方式对功能进行转移。我们以三向强的形式组织相应的转移系数,然后将低位、宽度和分组结构强加在这个系数振幅上。这些结构有助于减少维度,整合不同单个进程的信息,并便利解释。我们为参数估计开发了高度可伸缩的优化算法。我们为回收的数拉值绘制了大样本错误,并建立了分组识别一致性,同时允许多变点过程的维度发生差异。我们通过模拟和感官皮层研究中的跨区域神经激列分析来展示我们方法的功效。