Combining additive models and neural networks allows to broaden the scope of statistical regression and extends deep learning-based approaches by interpretable structured additive predictors at the same time. Existing approaches uniting the two modeling approaches are, however, limited to very specific combinations and, more importantly, involve an identifiability issue. As a consequence, interpretability and stable estimation is typically lost. We propose a general framework to combine structured regression models and deep neural networks into a unifying network architecture. To overcome the inherent identifiability issues between different model parts, we construct an orthogonalization cell that projects the deep neural network into the orthogonal complement of the statistical model predictor. This enables proper estimation of structured model parts and thereby interpretability. We demonstrate the framework's efficacy in numerical experiments and illustrate its special merits in benchmarks and real-world applications.
翻译:将添加型模型和神经网络结合起来,可以扩大统计回归的范围,同时通过可解释的结构化添加型预测器推广深层次的学习方法。但是,将这两种模型方法结合在一起的现有方法仅限于非常具体的组合,更重要的是,涉及一个可识别性问题。因此,通常会丧失可解释性和稳定的估计。我们提出了一个总框架,将结构化回归模型和深层神经网络结合到一个统一的网络结构中。为了克服不同模型部分之间固有的可识别性问题,我们建立一个正对称单元,将深神经网络投射到统计模型预测器的圆形补充中。这样,就可以对结构化模型部分进行适当的估计,从而解释性。我们展示了框架在数字实验中的功效,并展示其在基准和现实世界应用中的特殊优点。