The analysis of longitudinal, heterogeneous or unbalanced clustered data is of primary importance to a wide range of applications. The Linear Mixed Model (LMM) is a popular and flexible extension of the linear model specifically designed for such purposes. Historically, a large proportion of material published on the LMM concerns the application of popular numerical optimization algorithms, such as Newton-Raphson, Fisher Scoring and Expectation Maximization to single-factor LMMs (i.e. LMMs that only contain one "factor" by which observations are grouped). However, in recent years, the focus of the LMM literature has moved towards the development of estimation and inference methods for more complex, multi-factored designs. In this paper, we present and derive new expressions for the extension of an algorithm classically used for single-factor LMM parameter estimation, Fisher Scoring, to multiple, crossed-factor designs. Through simulation and real data examples, we compare five variants of the Fisher Scoring algorithm with one another, as well as against a baseline established by the R package lmer, and find evidence of correctness and strong computational efficiency for four of the five proposed approaches. Additionally, we provide a new method for LMM Satterthwaite degrees of freedom estimation based on analytical results, which does not require iterative gradient estimation. Via simulation, we find that this approach produces estimates with both lower bias and lower variance than the existing methods.


翻译:对纵向、差异或不平衡的集群数据的分析对于范围广泛的应用至关重要。线性混合模型(LMM)是专门为此类目的设计的线性模型的广受欢迎的灵活扩展。历史上,LMMM上出版的大量材料涉及通用数字优化算法的应用,如牛顿-拉弗松、渔业Scoring和期望最大化为单一因素LMMs(即只包含一个“因素”的LMMMs),但近年来,LMM文献的重点逐渐转向为更复杂、多要素设计制定估算和推断方法。在本文中,我们提出和提出新的表达方式,用于对单一因素LMMM参数估算、Fisherish Scoring和期望最大化为单因素LMMM(即只包含一个“因素”对观察进行分组的变量)。然而,我们通过模拟和真实数据实例,将Vicerish Scoring Scorporation的五种变种变式与另一个变式,以及Rprogram lmer lm确定的基线,并找到更准确性和更强的计算方法的证据。我们提出的标准性估算结果,我们提出的第四种标准的计算效率需要我们提出的第四种计算。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
78+阅读 · 2021年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
数据分析师应该知道的16种回归技术:岭回归
数萃大数据
15+阅读 · 2018年8月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
78+阅读 · 2021年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
数据分析师应该知道的16种回归技术:岭回归
数萃大数据
15+阅读 · 2018年8月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员