Motivated by the theory of spin-glasses in physics, we study the so-called reconstruction problem for the related distributions on the tree, and on the sparse random graph $G(n,d/n)$. Both cases, reduce naturally to studying broadcasting models on the tree, where each edge has its own broadcasting matrix, and this matrix is drawn independently from a predefined distribution. In this context, we study the effect of the configuration at the root to that of the vertices at distance $h$, as $h\to\infty$. We establish the reconstruction threshold for the cases where the broadcasting matrices give rise to symmetric, 2-spin Gibbs distributions. This threshold seems to be a natural extension of the well-known Kesten-Stigum bound which arises in the classic version of the reconstruction problem. Our results imply, as a special case, the reconstruction threshold for the well-known Edward-Anderson model of spin-glasses on the tree. Also, we extend our analysis to the setting of the Galton-Watson tree, and the random graph $G(n,d/n)$, where we establish the corresponding thresholds.Interestingly, for the Edward-Anderson model on the random graph, we show that the replica symmetry breaking phase transition, established in [Guerra and Toninelli:2004], coincides with the reconstruction threshold. Compared to the classical Gibbs distributions, the spin-glasses have a lot of unique features. In that respect, their study calls for new ideas, e.g., here we introducing novel estimators for the reconstruction problem. Furthermore, note that the main technical challenge in the analysis is the presence of (too) many levels of randomness. We manage to circumvent this problem by utilising recently proposed tools coming from the analysis of Markov chains.


翻译:在物理学中旋转玻璃理论的推动下,我们研究了树上相关分布的所谓重建问题,以及稀有随机图$G(n,d/n)美元。两种情况都自然地减少为研究树上的广播模型,每个边缘都有自己的广播矩阵,而这个矩阵是独立于预先定义的分布的。在这方面,我们研究了结构的根部对位于远方美元(美元)的2004年螺旋的底部的影响。我们为树上相关分布的所谓重建问题建立了所谓的重建门槛。我们为广播矩阵产生对称性、2先行G(n,d/n)Gibbs分布特征的案例建立了重建门槛。这个门槛似乎是众所周知的Kesten-Stug 界限的自然延伸,它出现在重建问题的经典版本中。我们的结果,作为一个特殊的例子,它意味着在树上著名的Edward-Anters的螺旋玻璃模型的底部。此外,我们把我们的分析扩大到了Galton-Watson树的设置, 以及Orbalg 正在推出的底线的底部的底值, 开始的底部的底部的底部的底结构分析, 显示的底部的底部的底部的底部的底部, 显示。我们用来显示的底部的底部的底部的底部的底部的底部的底部分析, 显示的底部的底部的底部的底部的底部的底部的底部的底部的底部的底部的底部。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月14日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员