Motivated by the problem of exploring discrete but very complex state spaces in Bayesian models, we propose a novel Markov Chain Monte Carlo search algorithm: the taxicab sampler. We describe the construction of this sampler and discuss how its interpretation and usage differs from that of standard Metropolis-Hastings as well as the closely-related Hamming ball sampler. The proposed taxicab sampling algorithm is then shown to demonstrate substantial improvement in computation time relative to a na\"ive Metropolis-Hastings search in a motivating Bayesian regression tree count model, in which we leverage the discrete state space assumption to construct a novel likelihood function that allows for flexibly describing different mean-variance relationships while preserving parameter interpretability compared to existing likelihood functions for count data.
翻译:基于探索贝耶斯模式中离散但非常复杂的州空间的问题,我们提议了一部新颖的Markov链条蒙特卡洛搜索算法:计税器取样员。我们描述了该取样员的构造,并讨论了其解释和使用与标准大都会-哈斯廷以及密切相关的Hamming球取样员的不同之处。然后,拟议的计税器取样算法显示,相对于一个激励贝耶斯回归树计数模型,比起一个激励贝耶斯回归树计数模型,在计算时间方面有了很大的改进,我们利用离散州空间假设来构建一个新的可能性功能,允许灵活描述不同的中差关系,同时保持参数可解释性,与现有的计数数据概率函数相比。