In mathematical finance, Levy processes are widely used for their ability to model both continuous variation and abrupt, discontinuous jumps. These jumps are practically relevant, so reliable inference on the feature that controls jump frequencies and magnitudes, namely, the Levy density, is of critical importance. A specific obstacle to carrying out model-based (e.g., Bayesian) inference in such problems is that, for general Levy processes, the likelihood is intractable. To overcome this obstacle, here we adopt a Gibbs posterior framework that updates a prior distribution using a suitable loss function instead of a likelihood. We establish asymptotic posterior concentration rates for the proposed Gibbs posterior. In particular, in the most interesting and practically relevant case, we give conditions under which the Gibbs posterior concentrates at (nearly) the minimax optimal rate, adaptive to the unknown smoothness of the true Levy density.
翻译:在数学融资中,Levy过程被广泛用于模拟连续变换和突然、不连续跳跃的能力。这些跳跃在实际中具有相关性,因此对控制跳跃频率和音量的特征,即Levy密度的可靠推论至关重要。在这类问题上,进行基于模型(例如Bayesian)推论的具体障碍是,对于Levy一般过程来说,可能性是难以克服的。为了克服这一障碍,我们在这里采用了Gibbs postior 框架,该框架用适当的损失函数而不是可能性来更新先前的分布。我们为提议的Gibbs 远地点设定了无症状的后遗物浓度率。特别是,在最有趣和实际相关的案例中,我们给出了条件,使Gibs 后遗物浓缩到(近于)微量最大最佳速率,适应真正的Levy密度未知的平滑度。