Even though Nearest Neighbor Gaussian Processes (NNGP) alleviate considerably MCMC implementation of Bayesian space-time models, they do not solve the convergence problems caused by high model dimension. Frugal alternatives such as response or collapsed algorithms are an answer.gree Our approach is to keep full data augmentation but to try and make it more efficient. We present two strategies to do so. The first scheme is to pay a particular attention to the seemingly trivial fixed effects of the model. We show empirically that re-centering the latent field on the intercept critically improves chain behavior. We extend this approach to other fixed effects that may interfere with a coherent spatial field. We propose a simple method that requires no tuning while remaining affordable thanks to NNGP's sparsity. The second scheme accelerates the sampling of the random field using Chromatic samplers. This method makes long sequential simulation boil down to group-parallelized or group-vectorized sampling. The attractive possibility to parallelize NNGP likelihood can therefore be carried over to field sampling. We present a R implementation of our methods for Gaussian fields in the public repository https://github.com/SebastienCoube/Improving_NNGP_full_augmentation . An extensive vignette is provided. We run our implementation on two synthetic toy examples along with the state of the art package spNNGP. Finally, we apply our method on a real data set of lead contamination in the United States of America mainland.
翻译:尽管近邻进程(NNGP)大大缓解了MMC 执行Bayesian空间时间模型(NNGP)的可能性,但它们并不能解决高模型层面造成的趋同问题。反应或崩溃算法等节奏替代方法是一个答案。gree 我们的方法是保持完全的数据扩增,但试图提高数据效率。 我们提出两种策略。 第一个方案是特别关注模型看起来微不足道的固定效果。 我们从经验上表明,在拦截中重新聚焦潜伏场会极大地改善连锁行为。 我们将这一方法推广到其他可能干扰连贯空间字段的固定效应。 我们提出了一个简单的方法,不需要调整,而因为NNGPP的偏差仍然可以负担得起。 第二个方案是利用Cromat采样器加速随机字段的取样。 这种方法使得长期的连续模拟会归结为组分解或集束式的取样。 因此,可以将NGPOG的可能性平行地复制到实地取样中。 我们在GOus/GOBA的常规方法中应用了我们用于GOsal_GPalalalal 的常规数据存储室。