We present new policy mirror descent (PMD) methods for solving reinforcement learning (RL) problems with either strongly convex or general convex regularizers. By exploring the structural properties of these overall highly nonconvex problems we show that the PMD methods exhibit fast linear rate of convergence to the global optimality. We develop stochastic counterparts of these methods, and establish an ${\cal O}(1/\epsilon)$ (resp., ${\cal O}(1/\epsilon^2)$) sampling complexity for solving these RL problems with strongly (resp., general) convex regularizers using different sampling schemes, where $\epsilon$ denote the target accuracy. We further show that the complexity for computing the gradients of these regularizers, if necessary, can be bounded by ${\cal O}\{(\log_\gamma \epsilon) [(1-\gamma)L/\mu]^{1/2}\log (1/\epsilon)\}$ (resp., ${\cal O} \{(\log_\gamma \epsilon ) [(1-\gamma)L/\epsilon]^{1/2}\}$) for problems with strongly (resp., general) convex regularizers. Here $\gamma$ denotes the discounting factor. To the best of our knowledge, these complexity bounds, along with our algorithmic developments, appear to be new in both optimization and RL literature. The introduction of these convex regularizers also greatly expands the flexibility and applicability of RL models.


翻译:我们通过探讨这些总体高度非混凝土问题的结构特性,表明PMD方法具有与全球最佳化的快速线性趋同率。我们开发了这些方法的随机对应方法,并建立了美元O}(1/\epsilon)美元(resp.,$=cal O}(1/\epsilon2)美元),为解决这些RL问题而抽样复杂程度(resp.,一般)使用不同取样方法的混凝土(resp.,一般)正规化。我们进一步表明,如果有必要,计算这些正规化者梯度的复杂程度可以受$ocal O}(\log ⁇ ma) (1/\gamma)L/mu) (1/2 ⁇ log (1/\epsilon) = 美元(respregality locisional de ralislation)。

0
下载
关闭预览

相关内容

【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
26+阅读 · 2021年1月26日
专知会员服务
53+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员