In this paper, we consider the computational complexity of formally verifying the behavior of Rectified Linear Unit (ReLU) Neural Networks (NNs), where verification entails determining whether the NN satisfies convex polytopic specifications. Specifically, we show that for two different NN architectures -- shallow NNs and Two-Level Lattice (TLL) NNs -- the verification problem with (convex) polytopic constraints is polynomial in the number of neurons in the NN to be verified, when all other aspects of the verification problem held fixed. We achieve these complexity results by exhibiting explicit (but similar) verification algorithms for each type of architecture. Both algorithms efficiently translate the NN parameters into a partitioning of the NN's input space by means of hyperplanes; this has the effect of partitioning the original verification problem into polynomially many sub-verification problems derived from the geometry of the neurons. We show that these sub-problems may be chosen so that the NN is purely affine within each, and hence each sub-problem is solvable in polynomial time by means of a Linear Program (LP). Thus, a polynomial-time algorithm for the original verification problem can be obtained using known algorithms for enumerating the regions in a hyperplane arrangement. Finally, we adapt our proposed algorithms to the verification of dynamical systems, specifically when these NN architectures are used as state-feedback controllers for LTI systems. We further evaluate the viability of this approach numerically.


翻译:在本文中,我们考虑了正式核实校正线性单位神经网络(ReLU)的行为的计算复杂性。 校正线性单位( ReLU)神经网络( NNS) 的计算复杂性, 核查需要确定 NN 是否满足 convex 多元性规格。 具体地说, 我们展示了两种不同的 NN 结构结构 -- -- 浅 NN 和双级 Lattice (TLL) NN 结构 -- -- 与( convex) 多位性约束有关的核查问题, 在于NNN 神经的神经数量, 需要核实的所有其他方面都得到核实。 我们通过展示明确的( 但相似的)核查算法来实现这些复杂性结果。 两种算法都有效地将NNN参数转化为 NN 输入空间的分区, 浅度 NN 和 双级的 Lattice (TLL) NN 国家结构; 其作用是将最初的核查问题分解成多个子核查问题, 从神经的测算法中可以选择这些子质性方法, 我们的NNNE是每个结构内部的直径直线性系统, 因此, 将每个亚调算法的计算法的计算方法可以被理解一个已知的计算。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
27+阅读 · 2021年5月2日
专知会员服务
41+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
0+阅读 · 2021年5月19日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员