Which neural networks are similar is a fundamental question for both machine learning and neuroscience. Our novel method compares representations based on Bayesian statistics about linear readouts from the representations. Concretely, we suggest to use the total variation distance or Jensen-Shannon distance between prior predictive distributions to compare representations. The prior predictive distribution is a full description of the inductive bias and generalization of a model in Bayesian statistics, making it a great basis for comparisons. As Jensen-Shannon distance and total variation distance are metrics our dissimilarity measures are pseudo-metrics for representations. For a linear readout, our metrics just depend on the linear kernel matrix of the representations. Thus, our metrics connects linear read-out based comparisons to kernel based metrics like centered kernel alignment and representational similarity analysis. We apply our new metrics to deep neural networks trained on ImageNet-1k. Our new metrics can be computed efficiently including a stochastic gradient without dimensionality reductions of the representations. It broadly agrees with existing metrics, but is more stringent. It varies less across different random image samples, and it measures how well two representations could be distinguished based on a linear read out. Thus our metric nicely extends our toolkit for comparing representations.
翻译:暂无翻译