Quantum error-correcting codes with good parameters can be constructed by evaluating polynomials at the roots of the polynomial trace. In this paper, we propose to evaluate polynomials at the roots of trace-depending polynomials and show that this procedure gives rise to stabilizer quantum error-correcting codes with a wider range of lengths than in other papers involving roots of the trace and with excellent parameters. Namely, we are able to provide new binary records and non-binary codes improving the ones available in the literature.
翻译:量子误差校正代码, 具有良好的参数, 可以通过在多元痕量的根部评估多元误差代码来构建 。 在本文中, 我们提议在微量误差的根部评估多元误差代码 。 我们建议从微量误差的底部来评估多元误差代码, 并显示此程序会产生比其它有痕量根部和极佳参数的文档中长得多的稳定量子误差校正代码 。 也就是说, 我们能够提供新的二进制记录和非二进制代码, 改进文献中可用的代码 。