Sparse matrices and linear algebra are at the heart of scientific simulations. More than 70 sparse matrix storage formats have been developed over the years, targeting a wide range of hardware architectures and matrix types. Each format is developed to exploit the particular strengths of an architecture, or the specific sparsity patterns of matrices, and the choice of the right format can be crucial in order to achieve optimal performance. The adoption of dynamic sparse matrices that can change the underlying data-structure to match the computation at runtime without introducing prohibitive overheads has the potential of optimizing performance through dynamic format selection. In this paper, we introduce Morpheus, a library that provides an efficient abstraction for dynamic sparse matrices. The adoption of dynamic matrices aims to improve the productivity of developers and end-users who do not need to know and understand the implementation specifics of the different formats available, but still want to take advantage of the optimization opportunity to improve the performance of their applications. We demonstrate that by porting HPCG to use Morpheus, and without further code changes, 1) HPCG can now target heterogeneous environments and 2) the performance of the SpMV kernel is improved up to 2.5x and 7x on CPUs and GPUs respectively, through runtime selection of the best format on each MPI process.


翻译:光谱矩阵和线性代数是科学模拟的核心。 多年来,已经开发了70多个稀薄的矩阵存储格式,针对各种硬件架构和矩阵类型。每种格式的开发都是为了利用某个结构的特殊优势或特定矩阵的宽度模式,选择正确的格式对于实现最佳性能至关重要。 采用动态的稀释矩阵可以改变基本数据结构,使其在不引入令人望而却步的间接费用的情况下与运行时的计算相匹配,这有可能通过动态格式选择优化性能。 在本文中,我们引入了Morpheus,这是一个为动态稀释矩阵提供高效抽象的图书馆。采用动态矩阵的目的是提高开发者和终端用户的生产率,他们不需要了解和理解现有不同格式的具体实施方式,但是仍然希望利用优化机会来改进其应用的绩效。 我们证明,通过将HPCG移植使用MPG,不用进一步代码修改,1 HPCG现在可以针对不同的环境,2 SpMV 内流式软件的性能通过CPU 和CPI 的每个最佳格式改进到2.5和7x 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月22日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员