We propose a cautious Bayesian variable selection routine by investigating the sensitivity of a hierarchical model, where the regression coefficients are specified by spike and slab priors. We exploit the use of latent variables to understand the importance of the co-variates. These latent variables also allow us to obtain the size of the model space which is an important aspect of high dimensional problems. In our approach, instead of fixing a single prior, we adopt a specific type of robust Bayesian analysis, where we consider a set of priors within the same parametric family to specify the selection probabilities of these latent variables. We achieve that by considering a set of expected prior selection probabilities, which allows us to perform a sensitivity analysis to understand the effect of prior elicitation on the variable selection. The sensitivity analysis provides us sets of posteriors for the regression coefficients as well as the selection indicators and we show that the posterior odds of the model selection probabilities are monotone with respect to the prior expectations of the selection probabilities. We also analyse synthetic and real life datasets to illustrate our cautious variable selection method and compare it with other well known methods.
翻译:我们提出谨慎的贝叶西亚变量选择常规,方法是调查一个等级模型的敏感性,其中回归系数由钉钉和板块前缀指定。我们利用潜伏变量来理解共同变量的重要性。这些潜伏变量还使我们能够获得模型空间的大小,而模型空间是高维问题的一个重要方面。在我们的方法中,我们采用一种特定类型的稳健的贝叶西亚分析,而不是先确定一个单一的参数,我们考虑在同一参数组中的一系列前缀,以具体说明这些潜在变量的选择概率。我们还通过考虑一套预期的先前选择概率来实现这一点,从而使我们能够进行敏感度分析,以了解先前诱导对变量选择的影响。敏感度分析为我们提供了一组后缀系数以及选择指标,我们表明模型选择概率的后缀概率与先前对选择概率的预期是单一的。我们还分析了合成和真实生命数据集,以说明我们谨慎的变量选择方法,并将其与其他已知方法进行比较。