We introduce a new library named abess that implements a unified framework of best-subset selection for solving diverse machine learning problems, e.g., linear regression, classification, and principal component analysis. Particularly, the abess certifiably gets the optimal solution within polynomial times with high probability under the linear model. Our efficient implementation allows abess to attain the solution of best-subset selection problems as fast as or even 20x faster than existing competing variable (model) selection toolboxes. Furthermore, it supports common variants like best group subset selection and $\ell_2$ regularized best-subset selection. The core of the library is programmed in C++. For ease of use, a Python library is designed for conveniently integrating with scikit-learn, and it can be installed from the Python library Index. In addition, a user-friendly R library is available at the Comprehensive R Archive Network. The source code is available at: https://github.com/abess-team/abess.
翻译:我们引入了一个名为 Abess 的新图书馆, 该图书馆将实施一个用于解决各种机器学习问题的最佳子集选择的统一框架, 例如线性回归、 分类和主元件分析。 特别是, 在线性模式下, 自动可确证在多球时获得最佳解决方案, 概率高。 我们的高效实施允许 以比现有的变量( 模型) 选择工具箱更快甚至更快20x的速度, 实现最佳子集选择问题的解决方案。 此外, 它支持共同的变体, 如最佳组子选择 和 $@ ell_ 2$ 正规化的最佳子集选择 。 图书馆的核心编程在 C++ 中 。 为了便于使用, Python 图书馆的设计方便地与 scikit- Learn 整合, 可从 Python 图书馆索引中安装。 此外, 综合档案网络 上可提供方便用户使用的 R 图书馆 。 源代码可查到 https:// github.com/ abes-team/ abes 。