The non-uniform surface temperature distribution of rotating active stars is routinely mapped with the Doppler Imaging technique. Inhomogeneities in the surface produce features in high-resolution spectroscopic observations that shift in wavelength depending on their position on the visible hemisphere. The inversion problem has been systematically solved using maximum a-posteriori regularized methods assuming smoothness or maximum entropy. Our aim in this work is to solve the full Bayesian inference problem, by providing access to the posterior distribution of the surface temperature in the star. We use amortized neural posterior estimation to produce a model that approximates the high-dimensional posterior distribution for spectroscopic observations of selected spectral ranges sampled at arbitrary rotation phases. The posterior distribution is approximated with conditional normalizing flows, which are flexible, tractable and easy to sample approximations to arbitrary distributions. When conditioned on the spectroscopic observations, they provide a very efficient way of obtaining samples from the posterior distribution. The conditioning on observations is obtained through the use of Transformer encoders, which can deal with arbitrary wavelength sampling and rotation phases. Our model can produce thousands of posterior samples per second. Our validation of the model for very high signal-to-noise observations shows that it correctly approximates the posterior, although with some overestimation of the broadening. We apply the model to the moderately fast rotator II Peg, producing the first Bayesian map of its temperature inhomogenities. We conclude that conditional normalizing flows are a very promising tool to carry out approximate Bayesian inference in more complex problems in stellar physics, like constraining the magnetic properties.
翻译:旋转活跃恒星的非统一表面温度分布与 Doppler 图像成像技术定期绘制。 表面的不均匀性生成高分辨率光谱观测特征, 视其可见半球的方位变化而变化波长。 反向问题已经系统解决, 假设平稳或最大增温, 使用最优固定的固定方法。 我们这项工作的目标是解决整个贝亚人的推断问题, 提供对恒星表面温度的表面分布的存取。 我们使用摊合性神经表面表层估计来制作一种模型, 接近高分辨率光谱分布, 在任意旋转阶段对选定光谱范围的光谱进行光谱观测。 映射分布与有条件的正常的正常流动相近, 这些流动是灵活、 易移动的, 且易于采样到任意分布。 当以光谱模型模型为条件时, 它们提供了一种非常高效的方式获取来自海平面分布的样本。 我们通过使用变异的光光光光线光光光线表测测算模型进行观测, 能够将高清晰的光谱采集到高频谱的光谱序列样本, 。 我们的光谱采集的光谱采集的光谱取样的光谱采集的图像样本, 可以在的光谱采集的光谱采集的光谱采集的图像取样, 。