Potts models, which can be used to analyze dependent observations on a lattice, have seen widespread application in a variety of areas, including statistical mechanics, neuroscience, and quantum computing. To address the intractability of Potts likelihoods for large spatial fields, we propose fast ordered conditional approximations that enable rapid inference for observed and hidden Potts models. Our methods can be used to directly obtain samples from the approximate joint distribution of an entire Potts field. The computational complexity of our approximation methods is linear in the number of spatial locations; in addition, some of the necessary computations are naturally parallel. We illustrate the advantages of our approach using simulated data and a satellite image.
翻译:Potts 模型可用于分析对悬浮层的依附性观测,这些模型在包括统计力学、神经科学和量子计算在内的各个领域广泛应用。为解决Potts在大型空间领域的可能性的可吸引性,我们建议快速定购定有条件近似值,以便能够对观测到的和隐藏的Potts模型进行快速推断。我们的方法可以用来直接从整个Potts字段的近似联合分布中获取样本。我们近似方法的计算复杂性在空间位置数量上是线性的;此外,一些必要的计算是自然平行的。我们用模拟数据和卫星图像来说明我们的方法的优点。