Motivated by applications to DNA storage, we study reconstruction and list-reconstruction schemes for integer vectors that suffer from limited-magnitude errors. We characterize the asymptotic size of the intersection of error balls in relation to the code's minimum distance. We also devise efficient reconstruction algorithms for various limited-magnitude error parameter ranges. We then extend these algorithms to the list-reconstruction scheme, and show the trade-off between the asymptotic list size and the number of required channel outputs. These results apply to all codes, without any assumptions on the code structure. Finally, we also study linear reconstruction codes with small intersection, as well as show a connection to list-reconstruction codes for the tandem-duplication channel.
翻译:在DNA存储应用的推动下,我们研究受有限放大误差影响的整形矢量的重建和列表重建计划;我们确定与代码最小距离有关的误差球交叉点的无症状大小;我们还设计了各种有限放大误差参数范围的高效重建算法;然后将这些算法扩展至列表重建计划,并显示无症状列表大小与所需频道输出数量之间的权衡。这些结果适用于所有代码,而没有对代码结构作任何假设。最后,我们还研究与小相交线的线性重建代码,并显示同步复制频道与列表重建代码的连接。