We revise the proof of the zero-rate upper bounds on the reliability function of discrete memoryless channels for ordinary and list-decoding schemes. The available proofs devised by Berlekamp and Blinovsky are somehow uneasy in that they contain in one form or another some cumbersome "non-standard" procedures or computations. Here we follow Blinovsky's idea of using a Ramsey-theoretic result by Komlos, but we complement this with some missing steps to present a proof which is entirely in the realm of standard information theoretic tools even for general list size. We further add some comments on the connection between the two proofs to show that Berlekamp's and Komlos' results are essentially equivalent.
翻译:我们修改关于普通和列表解码办法的离散无记忆渠道的可靠性功能的零率上限的证据。 Berlekamp和Blinovsky设计的现有证据在某种程度上有些不自在,因为它们含有一种或另一种形式的繁琐的“非标准”程序或计算方法。这里我们遵循Blinovsky关于使用KomlosRamsRamsey理论结果的想法,但我们用一些缺失的步骤来补充,以提供完全属于标准信息理论工具范围内的证据,即使对于一般清单大小也是如此。我们进一步补充一些关于这两种证据之间联系的评论,以表明Berlekamp和Komlos的结果基本上相等。