Identifying correct discretization schemes of continuous stochastic processes is an important task, which is needed to infer model parameters from experimental observations. Motivated by the observation that consistent discretizations of continuous models should be invariant under temporal coarse graining, we derive an explicit Renormalization Group transformation on linear stochastic time series and show that the Renormalization Group fixed points correspond to discretizations of naturally occuring physical dynamics. Our fixed point analysis explains why standard embedding procedures do not allow for reconstructing hidden Markov dynamics, and why the Euler-Maruyama scheme applied to underdamped Langevin equations works for numerical integration, but not to derive the likelihood of a partially observed process in the context of parametric inference.
翻译:确定连续随机过程的正确离散计划是一项重要任务,从实验观测中推断出模型参数是必要的。 以连续模型的一致离散在时间粗粗颗粒下应该是无变的这一观察为动力,我们从线性随机时间序列中得出一个明确的重新整顿组变异,并表明重新整顿组的固定点与自然发生的物理动态的离散相对应。 我们的固定点分析解释了标准嵌入程序为什么不允许重建隐藏的Markov动态,以及为什么Euler-Maruyama方案适用于未得到充分标定的Langevin方程式是为了数字整合,而不是在参数推论中产生部分观察到过程的可能性。