We consider the problem of estimating a dose-response curve, both globally and locally at a point. Continuous treatments arise often in practice, e.g. in the form of time spent on an operation, distance traveled to a location or dosage of a drug. Letting A denote a continuous treatment variable, the target of inference is the expected outcome if everyone in the population takes treatment level A=a. Under standard assumptions, the dose-response function takes the form of a partial mean. Building upon the recent literature on nonparametric regression with estimated outcomes, we study three different estimators. As a global method, we construct an empirical-risk-minimization-based estimator with an explicit characterization of second-order remainder terms. As a local method, we develop a two-stage, doubly-robust (DR) learner. Finally, we construct a mth-order estimator based on the theory of higher-order influence functions. Under certain conditions, this higher order estimator achieves the fastest rate of convergence that we are aware of for this problem. However, the other two approaches are easier to implement using off-the-shelf software, since they are formulated as two-stage regression tasks. For each estimator, we provide an upper bound on the mean-square error and investigate its finite-sample performance in a simulation. Finally, we describe a flexible, nonparametric method to perform sensitivity analysis to the no-unmeasured-confounding assumption when the treatment is continuous.
翻译:我们考虑的是在全球和当地某一点估计剂量反应曲线的问题。连续治疗在实践上经常出现,例如,在操作上花费的时间、距离到药物的地点或剂量上。让A表示连续治疗变量,如果人口中的每个人接受A=a级治疗,推断目标是预期结果。根据标准假设,剂量反应功能采取部分平均值的形式。根据最近关于非对称回归的文献,并附有估计结果,我们研究三个不同的估计者。作为一种全球方法,我们建立一个基于经验的风险最小化估算器,明确描述二级药物剩余条件的特征。作为当地方法,我们开发一个两阶段、双曲线(DR)学习者。最后,我们根据上级影响功能的理论,构建一个 mth-顺序估计器。在某些条件下,这个更高的估计器达到我们所了解的最快的趋同率。然而,另一种基于经验-风险最小化的估算器则基于经验-风险最小化的估算器,明确描述二级药物剩余条件的特征。作为一种当地方法,我们开发一个两阶段,一个双级(双级)的回归分析方法,我们从上提出一个最终的回归分析方法。我们比较容易进行。一个层次(从上)到一个阶段分析。一个阶段开始,一个阶段里程分析,一个阶段里程分析,一个任务是用来进行一个阶段里程的,一个任务,一个任务是用来进行一个阶段里程的。