A trigonometrically approximated maximum likelihood estimation for $\alpha$-stable laws is proposed. The estimator solves the approximated likelihood equation, which is obtained by projecting a true score function on the space spanned by trigonometric functions. The projected score is expressed only by real and imaginary parts of the characteristic function and their derivatives, so that we can explicitly construct the targeting estimating equation. We study the asymptotic properties of the proposed estimator and show consistency and asymptotic normality. Furthermore, as the number of trigonometric functions increases, the estimator converges to the exact maximum likelihood estimator, in the sense that they have the same asymptotic law. Simulation studies show that our estimator outperforms other moment-type estimators, and its standard deviation almost achieves the Cram\'er--Rao lower bound. We apply our method to the estimation problem for $\alpha$-stable Ornstein--Uhlenbeck processes in a high-frequency setting. The obtained result demonstrates the theory of asymptotic mixed normality.
翻译:提出一个三维近似最大概率估算 $alpha$ stable 法律。 估计符解决了近似概率方程, 其方法是通过三重函数在空间上预测一个真实分数函数获得的。 预测分数只能用特性函数及其衍生物的真实和想象部分表示, 这样我们就可以明确构建目标估计方程。 我们研究拟议的估量器的无症状特性, 并显示一致性和无症状的正常性。 此外, 随着三角函数数量的增加, 估计符会聚集到精确的最大概率估量器上, 也就是说它们具有相同的静态法则。 模拟研究表明, 我们的测算器比其他时型估量器及其标准偏差几乎达到Cram\' er- Rao 较低的约束度。 我们用我们的方法在高频设置的 $\ alpha$- stable Ornste- Uhlenbeck 的估算问题中应用了我们的方法。 获得的结果显示正常的理论是混合的。