Knowledge Hypergraphs (KHs) have recently emerged as a knowledge representation for retrieval-augmented generation (RAG), offering a paradigm to model multi-entity relations into a structured form. However, existing KH-based RAG methods suffer from three major limitations: static retrieval planning, non-adaptive retrieval execution, and superficial use of KH structure and semantics, which constrain their ability to perform effective multi-hop question answering. To overcome these limitations, we propose PRoH, a dynamic Planning and Reasoning over Knowledge Hypergraphs framework. PRoH incorporates three core innovations: (i) a context-aware planning module that sketches the local KH neighborhood to guide structurally grounded reasoning plan generation; (ii) a structured question decomposition process that organizes subquestions as a dynamically evolving Directed Acyclic Graph (DAG) to enable adaptive, multi-trajectory exploration; and (iii) an Entity-Weighted Overlap (EWO)-guided reasoning path retrieval algorithm that prioritizes semantically coherent hyperedge traversals. Experiments across multiple domains demonstrate that PRoH achieves state-of-the-art performance, surpassing the prior SOTA model HyperGraphRAG by an average of 19.73% in F1 and 8.41% in Generation Evaluation (G-E) score, while maintaining strong robustness in long-range multi-hop reasoning tasks.
翻译:暂无翻译