Adversarial lateral movement via compromised accounts remains difficult to discover via traditional rule-based defenses because it generally lacks explicit indicators of compromise. We propose a behavior-based, unsupervised framework comprising two methods of lateral movement detection on enterprise networks: one aimed at generic lateral movement via either exploit or authenticated connections, and one targeting the specific techniques of process injection and hijacking. The first method is based on the premise that the role of a system---the functions it performs on the network---determines the roles of the systems it should make connections with. The adversary meanwhile might move between any systems whatever, possibly seeking out systems with unusual roles that facilitate certain accesses. We use unsupervised learning to cluster systems according to role and identify connections to systems with novel roles as potentially malicious. The second method is based on the premise that the temporal patterns of inter-system processes that facilitate these connections depend on the roles of the systems involved. If a process is compromised by an attacker, these normal patterns might be disrupted in discernible ways. We apply frequent-itemset mining to process sequences to establish regular patterns of communication between systems based on role, and identify rare process sequences as signalling potentially malicious connections.


翻译:由于通常缺乏明确的妥协指标,我们提议了一个基于行为、不受监督的框架,其中包括企业网络横向流动检测的两种方法:一种是通过开发或认证连接进行一般横向流动,一种是针对特定的程序注入和劫持技术。第一种方法是基于一个前提,即系统的作用 -- -- 其在网络-确定系统之间所起作用的作用 -- -- 在网络-确定应与之建立联系的系统的作用。对手可能同时在任何系统之间移动,可能寻求具有某些准入的异常作用的系统。我们根据作用对集群系统进行不受监督的学习,并查明与可能具有恶意的新作用的系统的联系。第二种方法是基于一个假设,即便利这些联系的系统间进程的时间模式取决于所涉系统的作用。如果一个攻击者破坏一个进程,这些正常的模式可能会以明显的方式中断。我们用经常的采矿来程序序列来建立基于作用的系统之间的定期通信模式,并查明作为潜在恶意联系的罕见的信号序列。

1
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年7月7日
Arxiv
0+阅读 · 2021年10月1日
Learning Memory-guided Normality for Anomaly Detection
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年7月7日
Top
微信扫码咨询专知VIP会员