Objective: Convolutional Neural Networks (CNNs) have shown great potential in the field of Brain-Computer Interface (BCI) due to their ability to directly process the raw Electroencephalogram (EEG) without artificial feature extraction. The raw EEG signal is usually represented as 2-Dimensional (2-D) matrix composed of channels and time points, which ignores the spatial topological information of EEG. Our goal is to make the CNN with the raw EEG signal as input have the ability to learn the EEG spatial topological features, and improve its classification performance while essentially maintaining its original structure. Methods: We propose an EEG Topographic Representation Module (TRM). This module consists of (1) a mapping block from the raw EEG signal to a 3-D topographic map and (2) a convolution block from the topographic map to an output of the same size as the input. We embed the TRM to 3 widely used CNNs, and tested them on 2 different types of publicly available datasets. Results: The results show that the classification accuracies of the 3 CNNs are improved on both datasets after using TRM. The average classification accuracies of DeepConvNet, EEGNet and ShallowConvNet with TRM are improved by 4.70\%, 1.29\% and 0.91\% on Emergency Braking During Simulated Driving Dataset (EBDSDD), and 2.83\%, 2.17\% and 2.00\% on High Gamma Dataset (HGD), respectively. Significance: By using TRM to mine the spatial topological features of EEG, we improve the classification performance of 3 CNNs on 2 datasets. In addition,since the output of TRM has the same size as the input, any CNN with the raw EEG signal as input can use this module without changing the original structure.


翻译:目标: 脑神经网络(CNNs) 显示在大脑- 计算机界面领域的巨大潜力, 因为他们有能力直接处理原始电动脑图( EEG), 而没有人工地貌提取。 原始 EEEG 信号通常代表由频道和时间点组成的二维差异(2-D) 矩阵, 忽略 EEEEG 的空间地形信息。 我们的目标是让CNN 使用原始 EEEG 信号, 因为输入能够学习 EEEG 空间表层特征, 并改善其分类性能, 并基本上保持其原始结构。 方法: 我们建议 EEG 上层图示显示模块( TRM) 。 这个模块包括 (1) 从原始 EEEEG 信号到 3- D 地形图的绘图块, (2) 从地形图到与输入相同的输出。 我们将TRM 到广泛使用的 3 CNNM, 测试它们使用两种不同的公开数据集。 结果: 3CNNCR 添加任何数据 。 结果显示, 3 3 CNNCR 的分类的精度, 正在改进, 改进 ERCBSD 和 DR 1 RD 数据输出 。

0
下载
关闭预览

相关内容

【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员