Federated learning aims to share private data to maximize the data utility without privacy leakage. Previous federated learning research mainly focuses on multi-class classification problems. However, multi-label classification is a crucial research problem close to real-world data properties. Nevertheless, a limited number of federated learning studies explore this research problem. Existing studies of multi-label federated learning did not consider the characteristics of multi-label data, i.e., they used the concept of multi-class classification to verify their methods' performance, which means it will not be feasible to apply their methods to real-world applications. Therefore, this study proposed a new multi-label federated learning framework with a Clustering-based Multi-label Data Allocation (CMDA) and a novel aggregation method, Fast Label-Adaptive Aggregation (FLAG), for multi-label classification in the federated learning environment. The experimental results demonstrate that our methods only need less than 50\% of training epochs and communication rounds to surpass the performance of state-of-the-art federated learning methods.


翻译:联邦学习旨在分享私人数据,以尽量扩大数据效用,不泄露隐私。以前的联邦学习研究主要侧重于多级分类问题。然而,多标签分类是接近现实世界数据属性的一个关键研究问题。然而,数量有限的联邦学习研究探索了这一研究问题。现有的多标签联合学习研究没有考虑到多标签数据的特点,即它们使用多级分类概念来核查其方法的性能,这意味着将方法应用于现实世界应用是不可行的。因此,这项研究提出了一个新的多标签联合学习框架,采用基于集群的多标签数据分配(CMDA)和新的汇总方法(FLAG),用于在联邦学习环境中进行多标签分类。实验结果显示,我们的方法只需要少于50<unk> 的培训区和交流周期就可超过州联邦学习方法的性能。</s>

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Survey on Data Augmentation for Text Classification
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
12+阅读 · 2019年3月14日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
Top
微信扫码咨询专知VIP会员