Weakly-supervised learning has become a popular technology in recent years. In this paper, we propose a novel medical image classification algorithm, called Weakly-Supervised Generative Adversarial Networks (WSGAN), which only uses a small number of real images without labels to generate fake images or mask images to enlarge the sample size of the training set. First, we combine with MixMatch to generate pseudo labels for the fake images and unlabeled images to do the classification. Second, contrastive learning and self-attention mechanism are introduced into the proposed problem to enhance the classification accuracy. Third, the problem of mode collapse is well addressed by cyclic consistency loss. Finally, we design global and local classifiers to complement each other with the key information needed for classification. The experimental results on four medical image datasets show that WSGAN can obtain relatively high learning performance by using few labeled and unlabeled data. For example, the classification accuracy of WSGAN is 11% higher than that of the second-ranked MIXMATCH with 100 labeled images and 1000 unlabeled images on the OCT dataset. In addition, we also conduct ablation experiments to verify the effectiveness of our algorithm.


翻译:微弱监督的学习近年来已成为一种流行技术。 在本文中, 我们提出一种新的医学图像分类算法, 叫做“ 微弱- 超强基因反反转网络 ” (WSGAN), 它只使用少量没有标签的真实图像来生成假图像或掩码图像, 以扩大培训数据集的样本规模。 首先, 我们与 MixMatch 合作, 为假图像和未贴标签的图像制作假标签, 以进行分类。 其次, 在拟议的问题中引入对比学习和自我注意机制, 以提高分类准确性。 第三, 模式崩溃的问题通过循环一致性损失得到了很好的解决。 最后, 我们设计了全球和地方的分类器, 以便用分类所需的关键信息互相补充。 四个医学图像数据集的实验结果表明, WSGAN 可以通过很少使用贴标签和未贴标签的数据获得较高的学习性能。 例如, WSGAN 的分类准确度比第二等级的 MIXMITch 高11%, 加上100个贴标签的图像和1000个未贴标签的 OCT 数据 。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Arxiv
7+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员