We study the global convergence of the gradient descent method of the minimization of strictly convex functionals on an open and bounded set of a Hilbert space. Such results are unknown for this type of sets, unlike the case of the entire Hilbert space. The proof of this convergence is based on the classical contraction principle. Then, we use our result to establish a general framework to numerically solve boundary value problems for quasi-linear partial differential equations (PDEs) with noisy Cauchy data. The procedure involves the use of Carleman weight functions to convexify a cost functional arising from the given boundary value problem and thus to ensure the convergence of the gradient descent method above. We prove the global convergence of the method as the noise tends to 0. The convergence rate is Lipschitz. Next, we apply this method to solve a highly nonlinear and severely ill-posed coefficient inverse problem, which is the so-called back scattering inverse problem. This problem has many real-world applications. Numerical examples are presented.


翻译:我们研究在Hilbert空间的开放和封闭的一组空间上将严格混凝土函数最小化的梯度下降法的全球趋同性。 与整个Hilbert空间的情况不同, 这种结果并不为人所知。 这种趋同的证据是以经典收缩原则为依据的。 然后, 我们利用我们的结果建立一个总框架, 以数字方式解决半线性局部差异方程式(PDEs)的边界值问题, 并使用吵闹的Cauchy数据。 这个程序涉及使用 Carleman 重量函数来解析由特定边界值问题产生的成本功能, 从而确保以上梯度下降法的趋同性。 我们证明该方法的全球趋同性, 因为噪音趋向为0。 趋同率是Lipschitz。 接下来, 我们用这个方法来解决一个高度非线性和严重错误的反位系数问题, 即所谓的后向反位分散问题。 这个问题有许多真实世界应用。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
23+阅读 · 2020年4月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员