The goal of this paper is to characterize Gaussian-Process optimization in the setting where the function domain is large relative to the number of admissible function evaluations, i.e., where it is impossible to find the global optimum. We provide upper bounds on the suboptimality (Bayesian simple regret) of the solution found by optimization strategies that are closely related to the widely used expected improvement (EI) and upper confidence bound (UCB) algorithms. These regret bounds illuminate the relationship between the number of evaluations, the domain size (i.e. cardinality of finite domains / Lipschitz constant of the covariance function in continuous domains), and the optimality of the retrieved function value. In particular, they show that even when the number of evaluations is far too small to find the global optimum, we can find nontrivial function values (e.g. values that achieve a certain ratio with the optimal value).
翻译:本文的目的是在功能领域相对于可受理功能评价的数量而言很大的情况下,即不可能找到全球最佳功能评价的数量,说明高斯-过程优化的特点。我们提供了优化战略所发现的解决办法的亚优度(巴伊西亚简单遗憾)的上限,这些解决方案与广泛使用的预期改进和高信任约束算法密切相关。这些遗憾界限揭示了评价数量、域大小(即有限域的基数/连续域的常数)和回收功能值的最佳性之间的关系。特别是,它们表明,即使评价数量太小,无法找到全球最佳,我们也可以找到非边际功能值(例如,以最佳值达到一定比例的值)。