We introduce the Divergence Phase Index (DPI), a novel framework for quantifying phase differences in one and multidimensional signals, grounded in harmonic analysis via the Riesz transform. Based on classical Hilbert Transform phase measures, the DPI extends these principles to higher dimensions, offering a geometry-aware metric that is invariant to intensity scaling and sensitive to structural changes. We applied this method on both synthetic and real-world datasets, including intracranial EEG (iEEG) recordings during epileptic seizures, high-resolution microscopy images, and paintings. In the 1D case, the DPI robustly detects hypersynchronization associated with generalized epilepsy, while in 2D, it reveals subtle, imperceptible changes in images and artworks. Additionally, it can detect rotational variations in highly isotropic microscopy images. The DPI's robustness to amplitude variations and its adaptability across domains enable its use in diverse applications from nonlinear dynamics, complex systems analysis, to multidimensional signal processing.
翻译:暂无翻译