Analyzing particle data plays an important role in many scientific applications such as fluid simulation, cosmology simulation and molecular dynamics. While there exist methods that can perform feature extraction and tracking for volumetric data, performing those tasks for particle data is more challenging because of the lack of explicit connectivity information. Although one may convert the particle data to volume first, this approach is at risk of incurring error and increasing the size of the data. In this paper, we take a deep learning approach to create feature representations for scientific particle data to assist feature extraction and tracking. We employ a deep learning model, which produces latent vectors to represent the relation between spatial locations and physical attributes in a local neighborhood. With the latent vectors, features can be extracted by clustering these vectors. To achieve fast feature tracking, the mean-shift tracking algorithm is applied in the feature space, which only requires inference of the latent vector for selected regions of interest. We validate our approach using two datasets and compare our method with other existing methods.


翻译:分析粒子数据在许多科学应用中起着重要作用,例如流体模拟、宇宙学模拟和分子动态。虽然存在可以对体积数据进行特征提取和跟踪的方法,但由于缺乏明确的连通性信息,执行粒子数据的任务更具挑战性。虽然可以将粒子数据转换为第一个体积,但这一方法有发生错误的风险,并增加了数据的规模。在本文件中,我们采取深层学习方法,为科学粒子数据建立特征显示,以协助特征提取和跟踪。我们采用了一种深层学习模型,产生潜在矢量,以代表空间位置和局部周边物理属性之间的关系。在潜伏矢量中,通过将这些矢量聚合来提取特征。为了实现快速特征跟踪,在地貌空间应用了平均移动跟踪算法,这只要求对某些感兴趣的区域进行潜在矢量的推断。我们用两个数据集验证了我们的方法,并将我们的方法与其他现有方法进行比较。

0
下载
关闭预览

相关内容

特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
8+阅读 · 2018年3月20日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
6+阅读 · 2018年2月8日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员