As 3D object detection on point clouds relies on the geometrical relationships between the points, non-standard object shapes can hinder a method's detection capability. However, in safety-critical settings, robustness on out-of-distribution and long-tail samples is fundamental to circumvent dangerous issues, such as the misdetection of damaged or rare cars. In this work, we substantially improve the generalization of 3D object detectors to out-of-domain data by taking into account deformed point clouds during training. We achieve this with 3D-VField: a novel method that plausibly deforms objects via vectors learned in an adversarial fashion. Our approach constrains 3D points to slide along their sensor view rays while neither adding nor removing any of them. The obtained vectors are transferrable, sample-independent and preserve shape smoothness and occlusions. By augmenting normal samples with the deformations produced by these vector fields during training, we significantly improve robustness against differently shaped objects, such as damaged/deformed cars, even while training only on KITTI. Towards this end, we propose and share open source CrashD: a synthetic dataset of realistic damaged and rare cars, with a variety of crash scenarios. Extensive experiments on KITTI, Waymo, our CrashD and SUN RGB-D show the high generalizability of our techniques to out-of-domain data, different models and sensors, namely LiDAR and ToF cameras, for both indoor and outdoor scenes. Our CrashD dataset is available at https://crashd-cars.github.io.


翻译:由于对点云的3D对象探测取决于各点之间的几何关系,非标准对象形状会妨碍方法的检测能力。 但是,在安全关键环境下,对分发和长尾抽样的稳健性对于绕过危险问题,例如对损坏或稀有汽车的误发现至关重要。 在这项工作中,我们通过在培训中考虑到变形点云,大大改进3D物体探测器对超出主体数据的常规化。我们用3D-V字段实现这一点:一种新颖的方法,通过对抗性方式学习的矢量器,令人难以置信地损坏物体的检测能力。然而,在安全关键环境下,我们的方法限制在分发和长尾部外的样本和长尾部样本中滑动3D点,而既不增加也不删除其中的任何。获得的矢量是可转移的、不依赖的样本并保持形状的平滑动和隐蔽性。我们通过这些矢量场产生的变变的正常样品,大大地提高了对不同形状物体的坚固性,例如损坏/畸形的汽车,即使只是对KITTITI的训练。为了这个目的,我们提出并分享了传感器的直观、高清晰的S-

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
已删除
将门创投
6+阅读 · 2019年11月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员