Quantum machine learning (QML) is a rapidly expanding field that merges the principles of quantum computing with the techniques of machine learning. One of the powerful mathematical frameworks in this domain is tensor networks. These networks are used to approximate high-order tensors by contracting tensors with lower ranks. Originally developed for simulating quantum systems, tensor networks have become integral to quantum computing and, by extension, to QML. Their ability to efficiently represent and manipulate complex, high-dimensional data makes them suitable for various machine learning tasks within the quantum realm. Here, we present a matrix product state (MPS) model, where the MPS functions as both a classifier and a generator. The dual functionality of this novel MPS model permits a strategy that enhances the traditional training of supervised MPS models. This framework is inspired by generative adversarial networks and is geared towards generating more realistic samples by reducing outliers. Additionally, our contributions offer insights into the mechanics of tensor network methods for generation tasks. Specifically, we discuss alternative embedding functions and a new sampling method from non-normalized MPSs.
翻译:暂无翻译