Purpose: The introduction of artificial intelligence / machine learning (AI/ML) products to the regulated fields of pharmaceutical research and development (R&D) and drug manufacture, and medical devices (MD) and in-vitro diagnostics (IVD), poses new regulatory problems: a lack of a common terminology and understanding leads to confusion, delays and product failures. Validation as a key step in product development, common to each of these sectors including computerized systems and AI/ML development, offers an opportune point of comparison for aligning people and processes for cross-sectoral product development. Methods: A comparative approach, built upon workshops and a subsequent written sequence of exchanges, summarized in a look-up table suitable for mixed-teams work. Results: 1. A bottom-up, definitions led, approach which leads to a distinction between broad vs narrow validation, and their relationship to regulatory regimes. 2. Common basis introduction to the primary methodologies for AI-containing software validation. 3. Pharmaceutical drug development and MD/IVD specific perspectives on compliant AI software development, as a basis for collaboration. Conclusions: Alignment of the terms and methodologies used in validation of software products containing artificial intelligence / machine learning (AI/ML) components across the regulated industries of human health is a vital first step in streamlining processes and improving workflows.


翻译:目的:将人工智能/机器学习(AI/ML)产品引入制药研发(研发)和药物制造以及医疗装置(MD)和体外诊断(IVD)等受管制领域的制药研发(研发)和药物制造和医疗装置(MD)和体外诊断(IVD),带来了新的监管问题:缺乏共同的术语和理解导致混乱、延误和产品失灵;将验证作为产品开发的一个关键步骤,这是包括计算机化系统和AI/ML开发等每个部门共有的产品开发的关键步骤,为协调人员和跨部门产品开发过程提供了一个适当的比较点; 方法:以讲习班和随后的书面交流顺序为基础,并在适合混合小组工作的外观表格中加以总结; 结果:自下而上、定义引导、导致区分广泛与狭小的验证及其与监管制度的关系的方法; 共同提出含有软件的初始验证方法; 3. 药品开发和MD/IVD具体观点,将遵守国际标准软件开发作为合作的基础。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员