Object recognition in humans depends primarily on shape cues. We have developed a new approach to measuring the shape recognition performance of a vision system based on nearest neighbor view matching within the system's embedding space. Our performance benchmark, ShapeY, allows for precise control of task difficulty, by enforcing that view matching span a specified degree of 3D viewpoint change and/or appearance change. As a first test case we measured the performance of ResNet50 pre-trained on ImageNet. Matching error rates were high. For example, a 27 degree change in object pitch led ResNet50 to match the incorrect object 45% of the time. Appearance changes were also highly disruptive. Examination of false matches indicates that ResNet50's embedding space is severely "tangled". These findings suggest ShapeY can be a useful tool for charting the progress of artificial vision systems towards human-level shape recognition capabilities.


翻译:人类对象的辨识主要取决于形状提示。 我们开发了一种新的方法, 来测量视觉系统的形状辨识性能。 我们的性能基准, 形状Y, 能够精确地控制任务难度, 具体地执行3D 视图变化和/ 或外观变化。 作为第一个测试案例, 我们测量了 ResNet50 在图像网上预先训练过的 ResNet50 的性能。 匹配误差率很高 。 例如, 对象定位的27度变化导致 ResNet50 匹配不正确的对象45%的时间 。 外观变化也具有高度干扰性 。 对假匹配的检查显示 ResNet50 嵌入空间严重“ 缠绕 ” 。 这些发现显示 ShapeY 是一个有用的工具, 用来绘制人造视觉系统在人类层次形状识别能力上的进展 。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员