To enable automatic disassembly of different product types with uncertain conditions and degrees of wear in remanufacturing, agile production systems that can adapt dynamically to changing requirements are needed. Machine learning algorithms can be employed due to their generalization capabilities of learning from various types and variants of products. However, in reality, datasets with a diversity of samples that can be used to train models are difficult to obtain in the initial period. This may cause bad performances when the system tries to adapt to new unseen input data in the future. In order to generate large datasets for different learning purposes, in our project, we present a Blender add-on named MotorFactory to generate customized mesh models of various motor instances. MotorFactory allows to create mesh models which, complemented with additional add-ons, can be further used to create synthetic RGB images, depth images, normal images, segmentation ground truth masks, and 3D point cloud datasets with point-wise semantic labels. The created synthetic datasets may be used for various tasks including motor type classification, object detection for decentralized material transfer tasks, part segmentation for disassembly and handling tasks, or even reinforcement learning-based robotics control or view-planning.
翻译:为了自动拆卸在再制造中具有不确定条件和磨损度的不同产品类型,需要有能够动态地适应不断变化的要求的灵活生产系统。由于机器学习算法能够从各种产品类型和变异中学习,因此可以采用机器学习算法。然而,在现实中,最初阶段很难获得具有多种样本的数据集,这些样本可以用来培训模型。当系统试图适应未来新的隐蔽输入数据时,这可能造成不良的性能。为了为不同的学习目的产生大型数据集,我们在项目中提出一个名为“Blender ” 的“MotalFatorial” 的“Blender add-complicate” 功能,以生成针对各种运动实例的定制的网格模型。 机器功能允许创建网格模型,这些模型加上额外的附加件,可以进一步用于创建合成的 RGB 图像、 深度图像、 正常图像、 分解地面真理遮罩和 3D 点云层数据集,并配有点的语义标签。创建的合成数据集可用于各种任务,包括机型分类分类、分散材料转移任务探测、分散材料转移任务探测任务检测任务检测任务、部分加强不全局。